Deducing Explicit from Implicit Visibility for Global Illumination with Antiradiance

Gregor Mückl Carsten Dachsbacher

Utrecht University 2013 – 4 – 8

Presenters: Joeri van der Velden & Mattijs Driel

Introduction

- Radiosity
- Antiradiance
- Implicit visibility
- Link mesh redundancy

Overview

- Introduction
- Radiosity & Antiradiance Recap
- Problem statement
- Solutions
 - Removing Occluded Links
 - Heuristics
 - User-Defined link removal
- Results
- Quick mention
 - Final Shooting
- Improvements & Conclusion

Radiosity & Antiradiance Recap

- Radiosity divides geometry into patches and creates a link mesh over them
- Propagate light over links using form factors
- Hierarchical radiositv

Radiosity & Antiradiance Recap

• Antiradiance: shoot negative light

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08

Problem Statement

Lots of redundant links in the link mesh!

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08 6/20

Solution - Removing Occluded Links

How do we know what links are redundant?

Define 2 rules:

- Find S O R patterns, remove both links to R. 1.
- Find patches with multiple incoming links, 2. remove all except the shortest link.

Joeri van der Velden & Mattijs Driel 2013 - 04 - 08

Solution - Removing Occluded Links

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.
- Rule 2 only works with closed surfaces.
- This is fine, antiradiance also uses this assumption.

Solution - Removing Occluded Links

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.

We have shown this works in simple cases.

How do these rules work in full 3D?

• Occluders can partially occlude receivers.

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.
- We need visibility testing.
- But avoid expensive explicit testing (Ray Casting).

Deduce explicit visibility from implicit visibility, stored in the Directional Bins.

Create 2 heuristics based on the 2 rules.

• Tests with the Directional Bins to see if the rule needs to apply.

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.

Heuristic 1 (Algorithm 1 in the paper)

- Find an S O R pattern.
- Find the bins of S that store O and R.
- If O occupies the same bins as R, O must be occluding R. We then apply rule 1.

Joeri van der Velden & Mattijs Driel 2013 - 04 - 08 11/20

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.

Heuristic 2 (Algorithm 2 in the paper)

- Find patch R with two incoming links sharing at least 1 bin.
- If the shorter link occupies the same bins as the longer link, there is full occlusion. We then apply rule 2 on these links.

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.

Heuristic 2 has a complication

• Antiradiance links that are indirectly required could be accidentally removed.

Use a failsafe algorithm (Algorithm 3 in the paper)

- Does additional checking.
- Will not work if Heuristic 1 has already changed the link mesh.

Solution - User-Defined Link Removal

- 1. Find S O R patterns, remove both links to R.
- 2. Find patches with multiple incoming links, remove all except the shortest link.

In addition to the 2 heuristics, allow the scene designer to define blocking geometry.

- Sever all links intersecting this geometry.
- Useful in scenes with multiple rooms, separated by walls.

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08 14/20

Results

					heuristic 1		heuristic 2			
			explicit	heuristic		not	explicit	heuristic		not
scene	patches	links	test	removal	incorrect	removed	test	removal	incorrect	removed
Japan	12745	629665	157449	129313	54872 (42%)	83058 (52%)	71007	34408	11732 (34%)	48331 (68%)
Office	14246	1470440	581768	395592	124232 (31%)	310408 (53%)	260475	85075	28739 (34%)	204139 (78%)
Desks	14396	1465632	759669	280705	7752 (10%)	486716 (40%)	690145	300316	11577 (4%)	401406 (58%)
Soda Hall	25023	2774452	2076609	1621749	73998 (5%)	528858 (25%)	1888014	1016923	21026 (2%)	892117 (47%)

scene	patches	links	heuristic 1	heuristic 2
Japan	12745	629665	22.1s	26.0s
Office	14246	1470440	248.2s	224.9s
Desks	14396	1465632	80.5s	127.0s
Soda Hall	25023	2774452	87.9s	280.0s

Japan

(c) $4 \times$ difference heuristic 1

(d) $4 \times$ difference heuristic 2

Office

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08 15/20

Results

					heuristic 1		heuristic 2			
			explicit	heuristic		not	explicit	heuristic		not
scene	patches	links	test	removal	incorrect	removed	test	removal	incorrect	removed
Japan	12745	629665	157449	129313	54872 (42%)	83058 (52%)	71007	34408	11732 (34%)	48331 (68%)
Office	14246	1470440	581768	395592	124232 (31%)	310408 (53%)	260475	85075	28739 (34%)	204139 (78%)
Desks	14396	1465632	759669	280705	7752 (10%)	486716 (40%)	690145	300316	11577 (4%)	401406 (58%)
Soda Hall	25023	2774452	2076609	1621749	73998 (5%)	528858 (25%)	1888014	1016923	21026 (2%)	892117 (47%)
		•								

scene	patches	links	heuristic 1	heuristic 2
Japan	12745	629665	22.1s	26.0s
Office	14246	1470440	248.2s	224.9s
Desks	14396	1465632	80.5s	127.0s
Soda Hall	25023	2774452	87.9s	280.0s

Desks

Soda Hall

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08 16/20

Results

Antiradiance	lin	k me	sh	25	innut
Anthaulance			:211	a3	mput.

				heuristic 1						heuristic 2				
			ex	plicit	heuris	stic		not	explicit	heuristic		not		
scene	patches	links	te	st	remov	/al	incorrect	removed	test	removal	incorrect	removed		
Japan	12745	629665	15	157449 12		313 54872 (42%)		83058 (52%)	71007	34408	11732 (34%)	48331 (68%)		
Office	14246	1470440	58	31768	39559	92	124232 (31%)	310408 (53%)	260475	85075	28739 (34%)	204139 (78%)		
Desks	14396	1465632	75	59669	28070)5	7752 (10%)	486716 (40%)	690145	300316	11577 (4%)	401406 (58%)		
Soda Hall	25023	2774452	20)76609	16217	49	73998 (5%)	528858 (25%)	1888014	1016923	21026 (2%)	892117 (47%)		
scene	patches	s link	S	heuris	tic 1	he	uristic 2							
Japan	12745	62966	5	22.1s			26.0s							
Office	14246	5 147044	0	248.2s			224.9s							
Desks	14396	5 146563	2	8	30.5s		127.0s							
Soda Hall	25023	3 277445	2	8	37.9s		280.0s							

- Comparison of heuristic removal with explicit removal.
- Incorrect links mostly due to discreteness of bins.
- But, incorrect links are typically small links
- CPU implementation of heuristic removal (slow).

Quick mention - Final Shooting

Method to render the output of the heuristic removal.

Different approach to the original Antiradiance paper.

- Instead of splatting, use a method similar to Instant Radiosity.
- Very expensive (paper mentions 0.44 fps)
- Does manage to preserve more detail.

Joeri van der Velden & Mattijs Driel 2013 – 04 – 08 18/20

Joeri van der Velden & Mattijs Driel 2013 - 04 - 08 19/20

Improvements & Conclusion

- Heuristics significantly reduce link mesh complexitity
- Speedup of light propagation in complex scenes
- Final shooting simplifies high-quality rendering

Possible improvements:

- GPU implementation would provide further speedup of link removal step
- Creating blocking geometry by analyzing scene geometry